Przy światłowodowych transmisjach o dużej przepływności istotna jest czystość interfejsów optycznych na całej trasie łącza optycznego. W przypadku transmisji jednomodowym włóknem światłowodowym sygnału optycznego o poziomie mocy przekraczającym 200 mW (23 dBm) w miejscach połączeń światłowodów, w przypadku ich zabrudzenia, może dochodzić do wypalania rdzeni. Zjawisko to określane jest jako efekt kraterowania.
Jego przyczyną są spalające się drobiny zanieczyszczeń znajdujące się w świetle rdzenia włókna. W przypadku transmisji dużych mocy optycznych, nawet najmniejsze drobiny niezauważalne pod mikroskopem, ulegając spaleniu uszkadzają włókna. Efekt ten występuje na skutek bardzo dużej gęstości mocy na powierzchni łączonych rdzeni. Gęstość mocy w przekroju rdzenia o średnicy 9 μm przy transmisji sygnału optycznego o mocy 1000 mW (30 dBm) osiąga wartość 16 mW/μm2. Sposobem uniknięcia uszkadzania złączy w takich sytuacjach byłoby ich utrzymywanie w idealnej czystości. Wymaganie to nie jest do spełnienia w rzeczywistych warunkach eksploatacji złączy. Jedyną skuteczną metodą całkowitej eliminacji efektu kraterowania rdzeni włókien przy transmisjach dużych mocy jest zastosowanie złączy jednodomowych z poszerzoną średnicą rdzeni włókien w miejscu ich połączenia. Technologię produkcji takich interfejsów optycznych opracowano w firmie Diamond. Dzięki wbudowanym w ferrulę odcinkom włókna gradientowego zwiększona zostaje powierzchnia styku rdzeni włókien z 64 μm2 do 1260 μm2.
Uzyskany efekt transmisji poszerzoną wiązką pozwala na znaczne obniżenie gęstości mocy w miejscu łączenia włókien i zmniejszenie wrażliwości złącza na zabrudzenia. Przy transmisji sygnału o mocy 1000 mW, gęstość mocy na styku rdzeni maleje do wartości 0,8 mW/μm2. Szkło kwarcowe, z którego wykonane jest włókno światłowodowe ulega uszkodzeniu na skutek generowanego ciepła przy gęstości mocy osiągającej wartość 3 mW/μm2.
Skuteczność tej metody dobrze obrazuje następujące porównanie: gęstość mocy na styku włókien z rdzeniem o średnicy 9 μm przy transmisji sygnału o mocy 250 mW wynosi 4 mW/μm2, a przy transmisji sygnału o mocy 3 W przez włókna gradientowe o średnicy rdzeni 40 μm wynosi 2,4 mW/μm2. Jak widać transmisja sygnału o mocy 3 W przez złącze mocy jest bezpieczna, gęstość mocy nie przekracza 3 mW/μm2, natomiast dla mocy 250 mW transmitowanej przez połączenie włókien z rdzeniami o średnicy 9 μm2 spowoduje zniszczenie włókien, w przypadku istnienia zabrudzeń, gdyż gęstość mocy na powierzchni styku przekracza 3 mW/μm2.
Zastosowanie złączy światłowodowych z interfejsem PS rozwiązuje problem wydzielania ciepła w świetle zanieczyszczonych rdzeni włókien, jednakże sprawa zachowania czystości złączy i adapterów pozostaje nadal bardzo istotna.
Wykorzystując technologię aktywnego centrowania rdzenia włókna światłowodowego można uzyskać bardzo niską wartość tłumienia interfejsów PS dzięki justowaniu kąta wyjścia światła z zakończenia światłowodu. Tego rodzaju interfejs może być stosowany w większości typów złączy, lecz ze względu na bezpieczeństwo, sugerowane jest ich użycie w obudowach standardu E-2000™ i F-3000™. Złącza te wyposażone są w zintegrowane klapki zasłaniające czoło ferruli po ich wypięciu z adaptera.
Specyfikacja interfejsu optycznego PS:
- ferrule klasy 0.1dB o tolerancji średnicy < 0.2μm,
- aktywne centrowanie rdzenia włókna światłowodowego z zawężoną wartością kąta wyjścia światła z czoła ferruli < 0.15°,
- niecentryczość < 3,5μm,
- powiększona średnica pola modów: < 35μm,
- 100% kontrola czoła ferruli.
Geometria czoła ferruli:
- czoło ferruli 4° APC,
- promień czoła ferruli (10÷20) mm,
- apex: 50μm,
- położenie włókna (-50÷200) nm (wartość ujemna oznacza podcięcie włókna).
mgr inż. Tomasz Rogowski
Kontakt do Działu R&D:
e-mail: r&d@optomer.pl
tel.: +48 42 611 01 00 wew. 31
Kontakt do Działu Sprzedaży:
e-mail: sprzedaz@optomer.pl
tel.: +48 42 650 53 33
Pobierz artykuł w wersji PDF z Centrum Wiedzy firmy OPTOMER: pobierz!
Artykuł powstał przy udziale ekspertów z Działu R&D firmy OPTOMER. Zachęcamy do zapoznania się z ich innymi autorskimi rozwiązaniami w zakresie sieci dostępowych.